There are infinitely many prime numbers

Mathematics Explained and Clarified

The definition and the main theorem statement

Definition

A prime number is a natural number greater than 1 that is divisible only by 1 and by itself, and does not have any other divisors.

The definition and the main theorem statement

Definition

A prime number is a natural number greater than 1 that is divisible only by 1 and by itself, and does not have any other divisors.

Theorem

There are infinitely many prime numbers.

The lemma about the existence of a prime divisor

Lemma

Any natural number has a prime divisor.

The lemma about the existence of a prime divisor

Lemma

Any natural number has a prime divisor.

Remark
 The lemma immediately follows from the fundamental theorem of arithmetic, which states that any natural number can be expressed as a product of prime numbers, and that this expression is unique up to the order of the prime divisors. However, we need here only the weaker statement of the lemma.

The lemma about the existence of a prime divisor

Lemma

Any natural number has a prime divisor.

Abstract

Remark The lemma is more or less obvious. The rough idea of the proof is to divide the number while we can, and when we can no longer divide it further, that would be the required prime divisor of the original number. The proof below is a more detailed formalization of that idea. In my view, it is a technicality, and I actually encourage viewers to skip it.

The proof of the lemma

Lemma

Any natural number has a prime divisor.

The proof of the lemma

Lemma

Any natural number has a prime divisor.
Take n.

The proof of the lemma

Lemma

Any natural number has a prime divisor.
Take n. 2 cases:

- n is prime.
- n is not prime.

The proof of the lemma

Lemma

Any natural number has a prime divisor.
Take n. 2 cases:
■ n is prime. $\Longrightarrow n$ is itself its own prime divisor.

- n is not prime.

The proof of the lemma

Lemma

Any natural number has a prime divisor.
Take n. 2 cases:
■ n is prime. $\Longrightarrow n$ is itself its own prime divisor.
■ n is not prime. $\Longrightarrow n$ has a divisor $d_{1}, d_{1} \neq 1, d_{1} \neq n$.

The proof of the lemma

Lemma

Any natural number has a prime divisor.
Take n. 2 cases:
■ n is prime. $\Longrightarrow n$ is itself its own prime divisor.
$\square n$ is not prime. $\Longrightarrow n$ has a divisor $d_{1}, d_{1} \neq 1, d_{1} \neq n$.
Repeat the same argument with d_{1}

The proof of the lemma

Lemma

Any natural number has a prime divisor.

Take n. 2 cases:

■ n is prime. $\Longrightarrow n$ is itself its own prime divisor.
$■ n$ is not prime. $\Longrightarrow n$ has a divisor $d_{1}, d_{1} \neq 1, d_{1} \neq n$.
Repeat the same argument with d_{1} : either d_{1} prime, or it has a divisor $d_{2}, d_{2} \neq 1, d_{2} \neq d_{1}$.

The proof of the lemma

Lemma

Any natural number has a prime divisor.
Take n. 2 cases:

- n is prime. $\Longrightarrow n$ is itself its own prime divisor.
$\square n$ is not prime. $\Longrightarrow n$ has a divisor $d_{1}, d_{1} \neq 1, d_{1} \neq n$.
Repeat the same argument with d_{1} : either d_{1} prime, or it has a divisor $d_{2}, d_{2} \neq 1, d_{2} \neq d_{1}$.
And so on.

The proof of the lemma

Lemma

Any natural number has a prime divisor.

Take n. 2 cases:

$\square n$ is prime. $\Longrightarrow n$ is itself its own prime divisor.
$■ n$ is not prime. $\Longrightarrow n$ has a divisor $d_{1}, d_{1} \neq 1, d_{1} \neq n$.
Repeat the same argument with d_{1} : either d_{1} prime, or it has a divisor $d_{2}, d_{2} \neq 1, d_{2} \neq d_{1}$.
And so on.
Repeat the same argument with d_{k}

The proof of the lemma

Lemma

Any natural number has a prime divisor.
Take n. 2 cases:
$\square n$ is prime. $\Longrightarrow n$ is itself its own prime divisor.
$■ n$ is not prime. $\Longrightarrow n$ has a divisor $d_{1}, d_{1} \neq 1, d_{1} \neq n$.
Repeat the same argument with d_{1} : either d_{1} prime, or it has a divisor $d_{2}, d_{2} \neq 1, d_{2} \neq d_{1}$.
And so on.
Repeat the same argument with d_{k} : either d_{k} prime, or it has a divisor $d_{k+1}, d_{k+1} \neq 1, d_{k+1} \neq d_{k}$.

The proof of the lemma

Lemma

Any natural number has a prime divisor.

Take n. 2 cases:

■ n is prime. $\Longrightarrow n$ is itself its own prime divisor.
$■ n$ is not prime. $\Longrightarrow n$ has a divisor $d_{1}, d_{1} \neq 1, d_{1} \neq n$.
Repeat the same argument with d_{1} : either d_{1} prime, or it has a divisor $d_{2}, d_{2} \neq 1, d_{2} \neq d_{1}$.
And so on.
Repeat the same argument with d_{k} : either d_{k} prime, or it has a divisor $d_{k+1}, d_{k+1} \neq 1, d_{k+1} \neq d_{k}$.
Divisibility is a transitive relationship

The proof of the lemma

Lemma

Any natural number has a prime divisor.
Take n. 2 cases:
$\square n$ is prime. $\Longrightarrow n$ is itself its own prime divisor.
$\square n$ is not prime. $\Longrightarrow n$ has a divisor $d_{1}, d_{1} \neq 1, d_{1} \neq n$.
Repeat the same argument with d_{1} : either d_{1} prime, or it has a divisor $d_{2}, d_{2} \neq 1, d_{2} \neq d_{1}$.
And so on.
Repeat the same argument with d_{k} : either d_{k} prime, or it has a divisor $d_{k+1}, d_{k+1} \neq 1, d_{k+1} \neq d_{k}$.
Divisibility is a transitive relationship \Longrightarrow on each step, d_{k+1} is not only a divisor of d_{k}, but also a divisor of all d_{1}, \ldots, d_{k}, and of n.

The proof of the lemma

$d_{1}>d_{2}>\ldots>d_{k}>\ldots$

Mathematics Explained and Clarified
There are infinitely many prime numbers

The proof of the lemma

$d_{1}>d_{2}>\ldots>d_{k}>\ldots \Longrightarrow$ the process will finish after a finite number of steps.

The proof of the lemma

$d_{1}>d_{2}>\ldots>d_{k}>\ldots \Longrightarrow$ the process will finish after a finite number of steps. \Longrightarrow there exists f such that d_{f} is prime.

The proof of the lemma

$d_{1}>d_{2}>\ldots>d_{k}>\ldots \Longrightarrow$ the process will finish after a finite number of steps. \Longrightarrow there exists f such that d_{f} is prime. \Longrightarrow d_{f} is the required prime divisor of n.

The proof of the main theorem

Theorem

There are infinitely many prime numbers.

The proof of the main theorem

Theorem
There are infinitely many prime numbers.
Suppose not true.

The proof of the main theorem

Theorem
There are infinitely many prime numbers.
Suppose not true. \Longrightarrow There is a finite number of prime numbers

The proof of the main theorem

Theorem

There are infinitely many prime numbers.
Suppose not true. \Longrightarrow There is a finite number of prime numbers: p_{1}, \ldots, p_{n}.

The proof of the main theorem

Theorem

There are infinitely many prime numbers.
Suppose not true. \Longrightarrow There is a finite number of prime numbers: p_{1}, \ldots, p_{n}.
Consider $q=p_{1} \cdot \ldots \cdot p_{n}+1$.

The proof of the main theorem

Theorem

There are infinitely many prime numbers.
Suppose not true. \Longrightarrow There is a finite number of prime numbers: p_{1}, \ldots, p_{n}.
Consider $q=p_{1} \cdot \ldots \cdot p_{n}+1$.
q has the remainder 1 when divided by $p_{i} \forall i$.

The proof of the main theorem

Theorem

There are infinitely many prime numbers.
Suppose not true. \Longrightarrow There is a finite number of prime numbers: p_{1}, \ldots, p_{n}.
Consider $q=p_{1} \cdot \ldots \cdot p_{n}+1$.
q has the remainder 1 when divided by $p_{i} \forall i . \Longrightarrow q$ is not divisible by any of p_{1}, \ldots, p_{n}.

The proof of the main theorem

Theorem

There are infinitely many prime numbers.
Suppose not true. \Longrightarrow There is a finite number of prime numbers: p_{1}, \ldots, p_{n}.
Consider $q=p_{1} \cdot \ldots \cdot p_{n}+1$.
q has the remainder 1 when divided by $p_{i} \forall i . \Longrightarrow q$ is not divisible by any of $p_{1}, \ldots, p_{n} . \Longrightarrow q$ is not divisible by any of the prime numbers.

The proof of the main theorem

Theorem

There are infinitely many prime numbers.
Suppose not true. \Longrightarrow There is a finite number of prime numbers: p_{1}, \ldots, p_{n}.
Consider $q=p_{1} \cdot \ldots \cdot p_{n}+1$.
q has the remainder 1 when divided by $p_{i} \forall i . \Longrightarrow q$ is not divisible by any of $p_{1}, \ldots, p_{n} . \Longrightarrow q$ is not divisible by any of the prime numbers.
But by the lemma, q must have a prime divisor.

The proof of the main theorem

Theorem

There are infinitely many prime numbers.
Suppose not true. \Longrightarrow There is a finite number of prime numbers: p_{1}, \ldots, p_{n}.
Consider $q=p_{1} \cdot \ldots \cdot p_{n}+1$.
q has the remainder 1 when divided by $p_{i} \forall i . \Longrightarrow q$ is not divisible by any of $p_{1}, \ldots, p_{n} . \Longrightarrow q$ is not divisible by any of the prime numbers.
But by the lemma, q must have a prime divisor. A contradiction.

